SUSTAINABLE FLOWS

Improving Financial & Ecosystem Service Flows

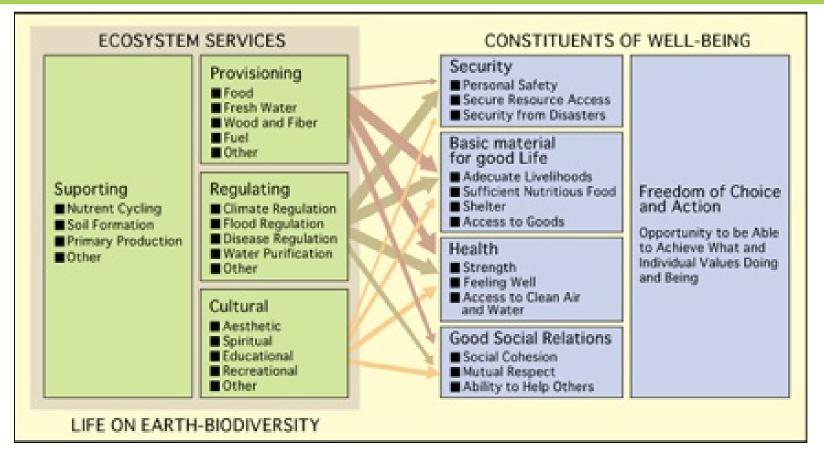
Improving Corporate Performance with Final Ecosystem Services

Dr. Charles Rhodes and John Finisdore

with

Dr. Simone Maynard, Dr. Joel Corona, Dr. Anthony Dvarskas, Dr. Joel Houdet

and support from


Dr. Ki-Hoon Lee and Dr. Stefan Schaltegger

INTRODUCTION: Key points

- Ecosystem Services (ES) not fully incorporated into business decision making
- Use of Ecosystem Services Classification System(s) (ES-CS) such as NESCS or CICES helps to:
 - coordinate and standardize the identification and measurement of ES to bring into formal quantification
 - reduce double counting
 - improve stakeholder engagement
 - enable data interoperability
- Case applications demonstrate efficacy of ES-CS use

INTRODUCTION – History: Origins of present "grouping standard"

"These categories overlap extensively, and the purpose is not to establish a taxonomy but rather to ensure that the analysis addresses the entire range of services." (MA, 2003, page 38)

SUSTAINABLE FLOWS

Introduction – History: Several groupings and Classifications emerged

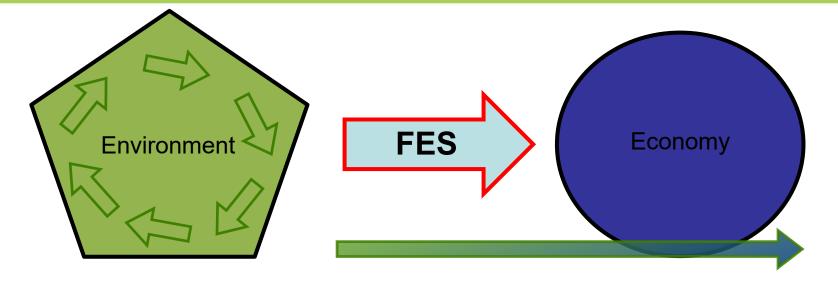
Millennium Ecosystem Assessment (MA) – Four Groups

The Economics of Ecosystems and Biodiversity (TEEB) – ES are not Benefits

Common International Classification of Ecosystem Services (CICES, v 5.1) – Hierarchy

Final Ecosystem Services Classification System (FEGS-CS) and National Ecosystem Services Classification System (NESCS) – conscious break from MA-based approach

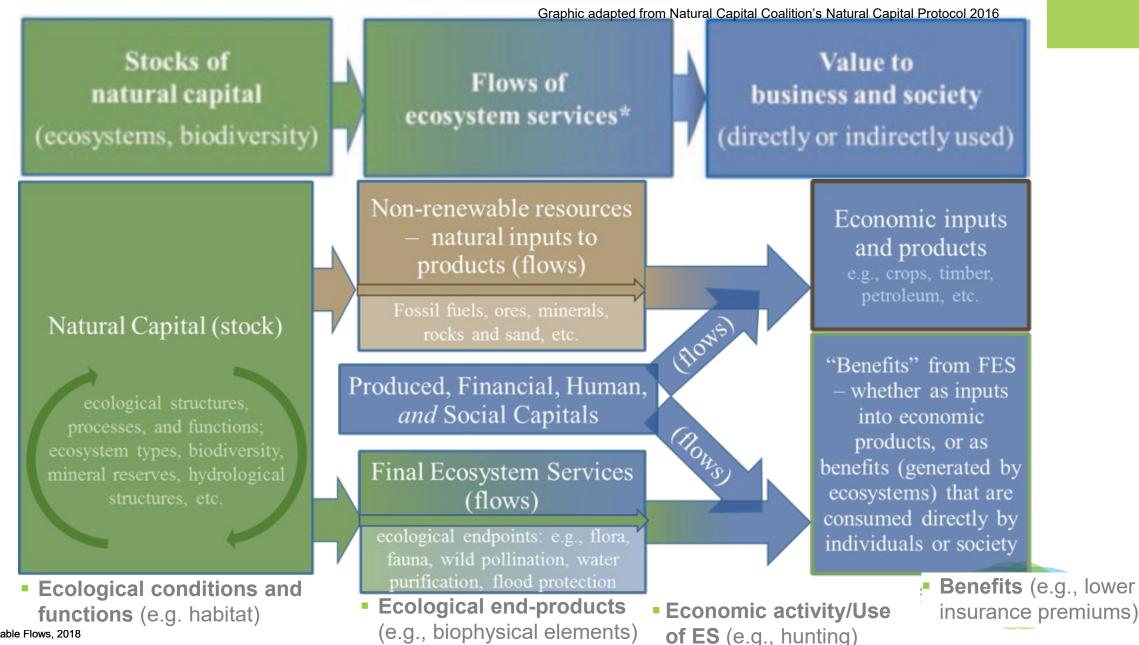
UK National Capital Accounting (NCA) – final ES elements


China National Capital Accounting (NCA) – final ES elements

Nature's Contribution to People (NCP)

- Ecological conditions and functions (e.g. habitat)
- Ecological end-products (e.g., biophysical elements)
- Economic activity/Use of ES (e.g., hunting)
- Benefits (e.g., lower insurance premiums)

INTRODUCTION – History: Final Ecosystem Services



- Transition point from being predominately ecological to being predominately economic
- Defined ecological end-products (like Boyd and Banzhaf "end-points" for accounting)
- Only systems that define ES within a hierarchy/classification are appropriate for standard

© Sustainable

Current application of natural capital

© Sustainable Flows, 2018

an overarching analytical model for discussing ways humans draw well-being from ecological processes

Analytical Process	 qualitative and quantitative choices 	ed and channel perspectives) cting to research constraints)	
Analysis Inputs	 choice of metrics (balance between ad-hoc and formal) choice of measures (constraints, optimal vs available) data (actual measures, or more likely, proxies) databases (currently almost all external, not built to ES purposes) 		
Analysis Outputs	 Publications (including combos of these) – Maps Assessments Policy Analysis (scenario, CBA) Recording / Accounting (national, corporate) 	 Tool and Resource Development – Methodologies relating to Analytical Processes and data generation Create Databases and call to upgrade Input Databases to purpose New tools and networking, standardizations 	

Corporate POV: Ecosystem-Services-based opportunities and risks (adapted from Hanson et al. 2012)

Туре	Opportunity	Risk	
Operational	 Increased efficiency and savings 	Increase in scarcity and cost of inputsDisruption to operations	
Regulatory and legal	 Improved licensing processes Services and products that meet new regulations Opportunities to influence public policies 	 Extraction restrictions Fines, fees, and lawsuits Permitting and quota challenges 	
Reputational	Brand differentiation	Harm to brand or imageDifficulty with "license to operate"	
Market and product	 Product and service innovations Market opportunities from certification Markets for ecosystem services 	• Changes in customer preferences	
Financing	• Investment from progressive leaders and socially responsible funds	• Steeper lending requirements and capital costs	

Improved identification of elements, metrics, and analytical techniques

- Using ES-CS helps to avoid common mistakes:
 - 1. Not having a direct user
 - 2. Mistaking a joint product of ecological and economic processes for an FES
 - 3. Misidentifying an ecosystem characteristic, process or function as an ecological end-product
 - 4. Failing to distinguish between a use and a user

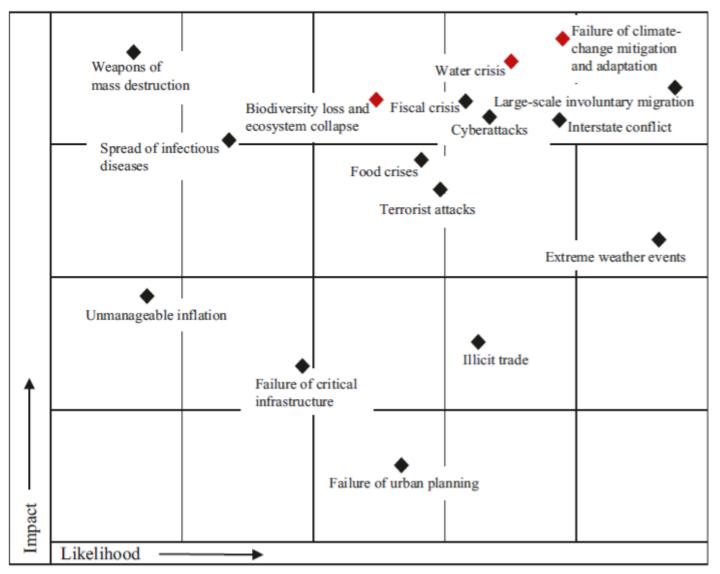
5. Not beginning from stocks and flows approach While helping to:

- 6. Not identifying metrics with each FES
- 7. Not proactively reducing the risk of double counting

All from use of ES-CS

ES values on land for crop production and views

MA based classification system


	Land for crops	
	Crops	\$120
/	Pollination	\$20
Double	Soil	\$30
counting	Rainwater	\$15
	Pumped groundwater	\$20
	Presence of farm for views by residents	\$50
	Total	\$ 255

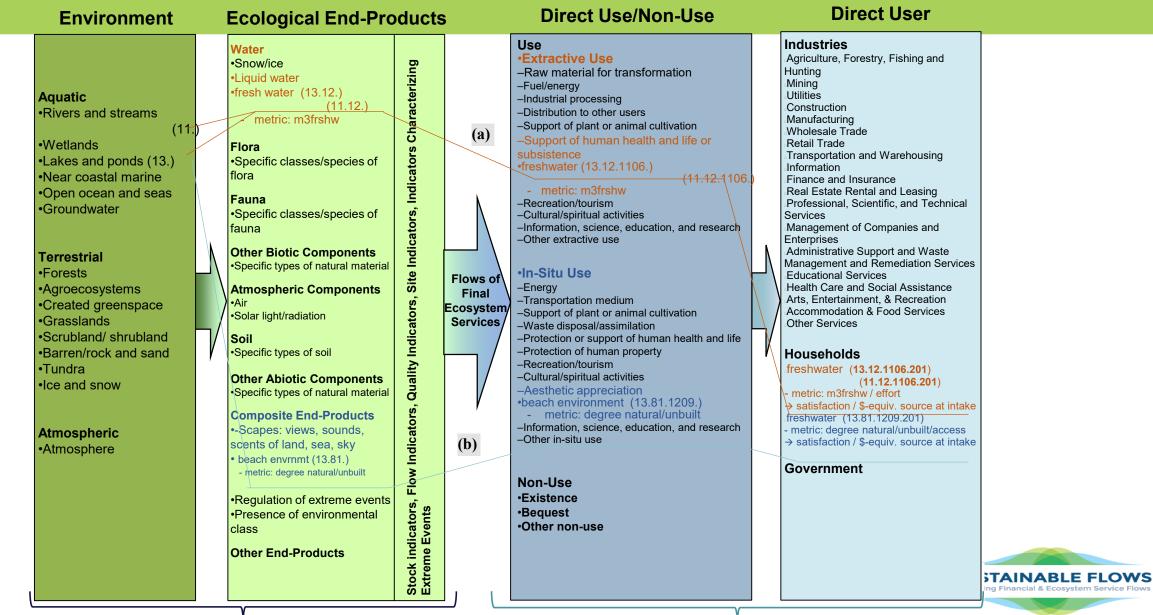
FES based classification system

Land for crops	
-	-
Non hired pollination	\$5
Soil for farming	\$30
Rainwater for farming	\$15
-	-
Presence of farm for views by residents	\$50
Total	\$100

WEF risk matrix, double counts

© Sustainable Flows, 2018

Restricted Case Example – Indonesian Palm Oil


- large firm considers conversion of new large tracts of peatland forest in affect on flows of ES; consider only:
 - the oil palm crop itself (and not loss of existing peat and plants)
 - reduced regulation of drought and flood ('final ES' only!)
 - threat to orangutans (FES approach embeds 'habitat,' not as an FES)

CICES	FEGS-CS	NESCS
FES-oriented	FES-based	FES-based
MA-based hierarchy	Environment + Beneficiary	Envt + EEP + Use + User
Section–Division–Group–	Environment Class–Subclass	Envt/EEP/Use/User
Class–ClassType	Beneficiary Class–Subclass	Class–Subclass–Infraclass
(code)	(code)	(code)

CICES 5.1, NESCS or NESCS Plus – oil palm, drought/flood, orangutans

CICES — oil palm itself	Provisioning – Cultivated terrestrial plants for nutrition, materials or energy – [Class](1)"nutrition"(2)energy – [Class Type]"Crop by type"	Division.Group.Class.ClassType 1.1.1.2 (nutrition), 1.1.1.3 (energy)
CICES — reduced regulation of drought and flood	Regulating – Water Regulation – Regulation of Water Flows (1) and Moderation of Extreme Events (2) – Mediation of liquid flows	Division.Group.Class.ClassType 1.1.1.2 , 1.1.1.
CICES — threat to orangutans	Cultural – (1)Recreation and ecotourism – Recreation and tourism–physical and experiential interactions([Class]"non-consumptive experiential uses" – [Class Type]"ofanimalsor locations; and (2)[Class] "Knowledge systems and educational values – Information for cognitive development" – Intellectual and representational interactions ("other cultural outputs" – [Class Type]"Existence"	Division.Group.Class.ClassType 3.1.1.2 (Recrtn or eco-tourism); 3.2.2.1 (Existence) 3.2.2.1 (Bequest)
NESCS – oil palm itself	Agroecosystems –EEP=Water(12),Soil(6),AtmosphericComponents(52), CombinedEnd-Products(83) – In-Situ Use – Agric.Industry (N.B.: <i>no crop</i>)	Environment.EEP.Use.User partial: 22. 12 .1105.111, 22. 6 .1203.111, 22. 52 .1203.111, and 22. 83 .1203.111
NESCS – reduced regulation of drought and flood	Agroecosystems – Combined End-Product Regulation of extreme events – Use=Supports plant cultivation(1203),protect life(1205),protect property(1206),tourism(1207) – Agric.Industry(111),Household(201)	Environment.EEP.Use.User partial: 22.82. 1203 .111 (cultivation by palm oil farmer), 21.82. 1206 .201 (protect household property) (N.B.: $\geq 8!$)
NESCS — threat to orangutans	Forests – Fauna – [Use+User]=recreation by tourists(1207.201), state or national park revenues(1207.203), domestic or foreign university research of orangutans (1210.161), traveling to native habitat using tour services(1207. 171)	Environment.EEP.Use.User partial: 21.3.1207.201, 21.3. 1207. 301, 21.3.1210. 161 , 21.3.1207.171,

Reference for NESCS codes (as necessary)

NESCS-D

© Sustai

NESCS-S

NESCS Plus (FEGS-CS & NESCS) should prove more applicable than the alternatives

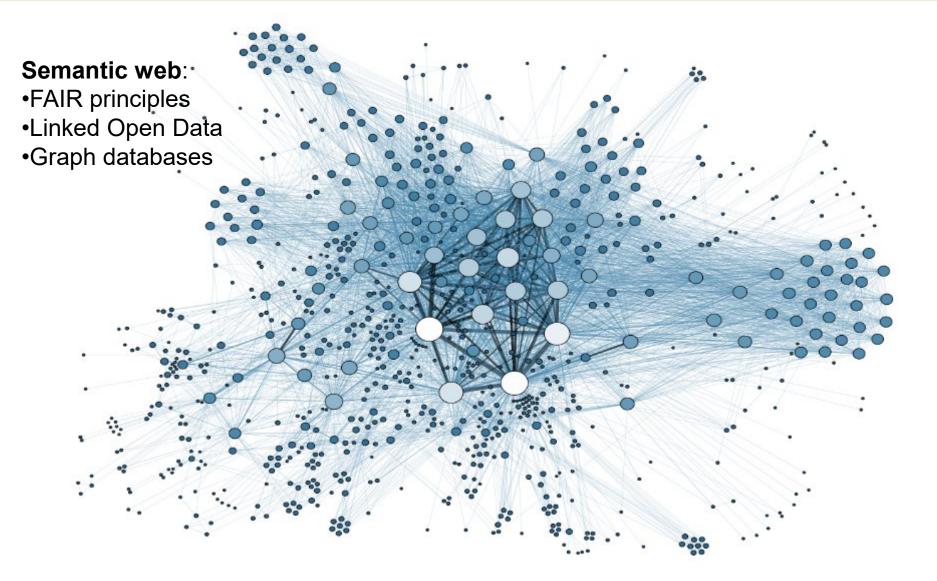
- Fits better into business processes
 - regulations
 - strategic planning
 - impacts of operations and sustainability programs on risk and human well-being
- Easier to understand
- Focuses on valuation
- NESCS "Four Groups" (Envt + EEP + Use + User) can fit naturally well with accounting rows and columns in Environmental-Economic-Accounting-style tables (US NCA)

© Sustainable Flows, 2018

		Generic Benefits		
		Defining data	Discovering data	Avoiding recreating CS
	1. Unifying language			
lefits	2. How interrelate			
Functional Benefits	3. Improved elements, metrics techniques			
Func	4. Knowledge transfer			
	5. Knowledge management			

Sustainable Flows helps organizations improve financial and ecosystem services flows through ecosystem modeling, valuation and risk assessment that improve strategies for managing risks related to the natural environment.

We work globally with the public and private sectors to advance methods and approaches, while providing clients practical strategies for risk reduction.


For more information please contact:

Dr. Charles Rhodes Washington, DC CharlesRRhodes@gmail.com +1 860 617 4009 John Finisdore Washington, DC John@SustainableFlows.com +1 202 640 5436

4. Improved knowledge transfer

© Sustainable Flows, 2 Graphic source: http://sites.linkeddata.center/blog/_/rsrc/1471794942816/archive/1-2-3linkedopendataarehere/Social_Network_Analysis_Visualization.png

Impact assessments

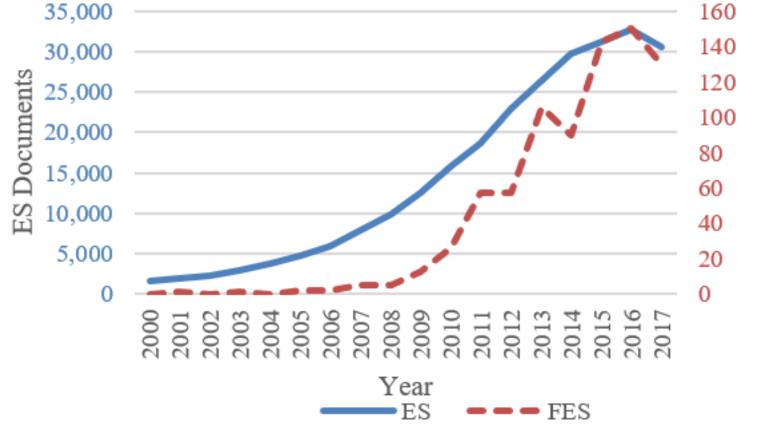
General Factor	Biodiversity	Ecosystem Services	AVOID if
Landscape-level	evel Options to protect/mitigate target species or habitats, or services within servicesheds		Few
BES Goals	Multiple value	Yes	
	Intact, undisturbed or critical habitat ¹		Yes
	Endemic, rare, unique species or habitats		Yes
luna a la acada ilita y	Protected areas		Yes
Irreplaceability (uniqueness)	Support for ecological connectivity or evolutionary processes		Strong
, , ,		ES link to specific place, habitat, or species	Strong
		Beneficiary dependence on ES	Strong
		Size of serviceshed area	Small
	Current rate and extent of loss from other drivers		High
Mala and iliter	Rate and likelihood of recovery from disturbance		Low
Vulnerability (threat)	Highly threatened species or habitats		Yes
(threat)		Beneficiary access to alternatives	Few
		Expected future ES demand	High

Graphic source: H. Tallis, et. AL. Mitigation for one & all: An integrated framework for mitigation of development impacts on biodiversity and ecosystem services. Environmental Impact Assessment Review 55 (2015) 21–34. http://dx.doi.org/10.1016/j.eiar.2015.06.005

Impact assessments

Local social value of biodiversity

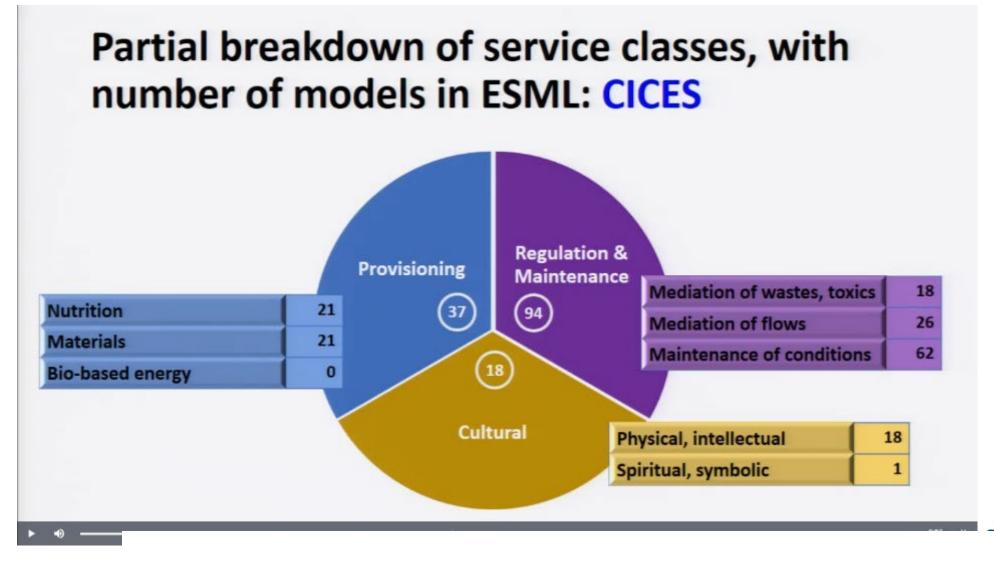
Graphic source: The Biodiversity Consultancy



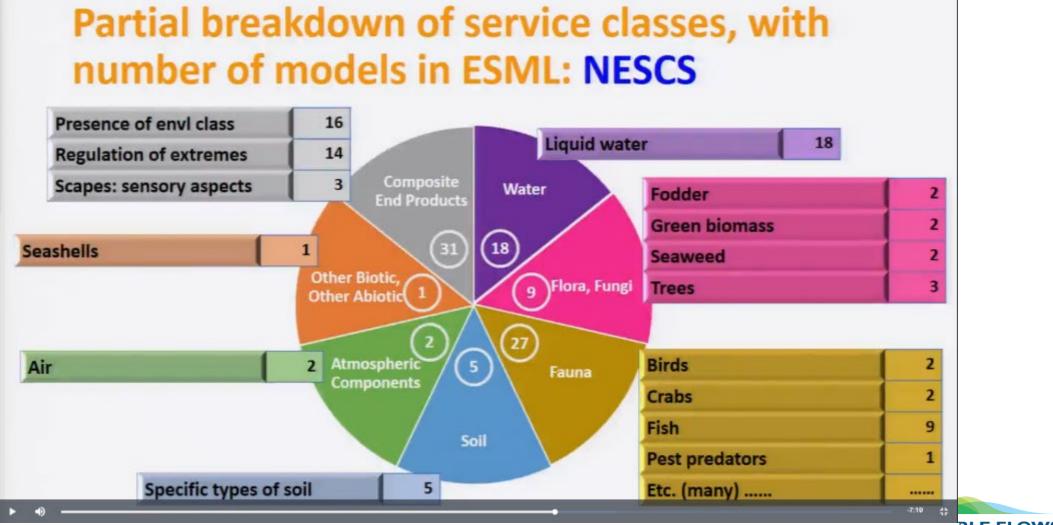
© Sustainable Flows, 2018

FES research is growing

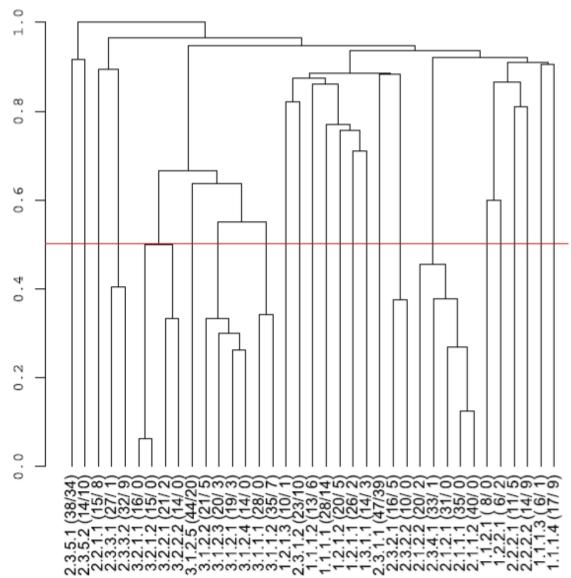
Chart 1: ES and FES documents per year


Google Scholar hits (25 May 2018)

FES Documents

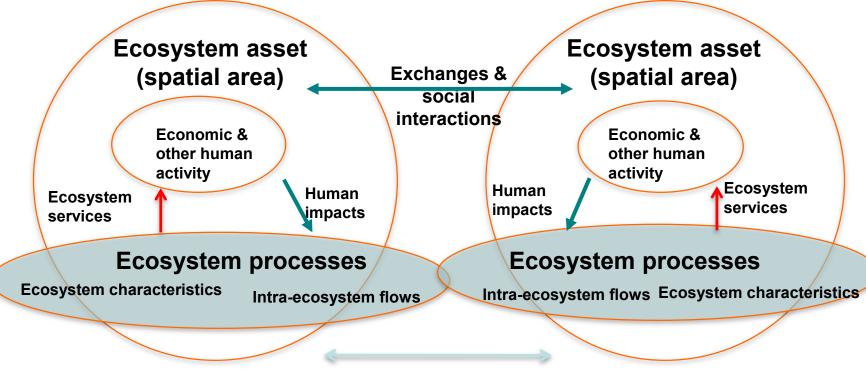


Defining data: f. Quicker identification of research needs

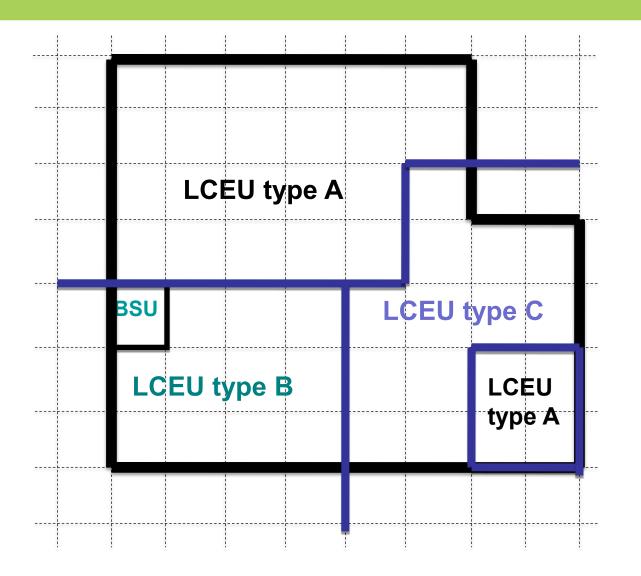


Defining data: f. Quicker identification of research needs

BLE FLOWS cosystem Service Flows

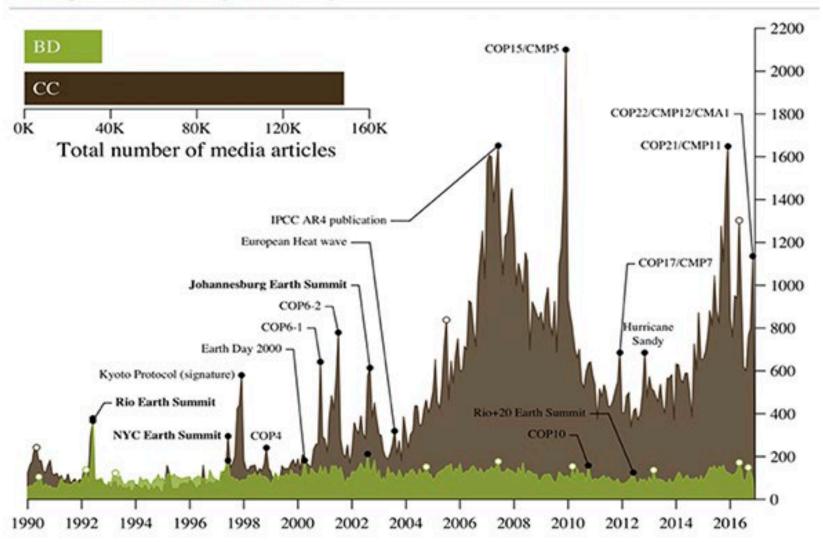

Clustering of CICES classes based on use fraction of shared indicators in published studies

© Sustainable Flows, 2C _______ Graph Source: B. Czúcz, I. Arany, M. Potschin, K. Bereczki, M. Kertész, M. Kiss, R. Aszalós, and R. Haines-Young, 2018. Where concepts meet the real world: A systematic review of ecosystem service indicators and their classification using CICES. Ecosystem Services, 29, pp.145-157.


Basic UN-SEEA accounting model

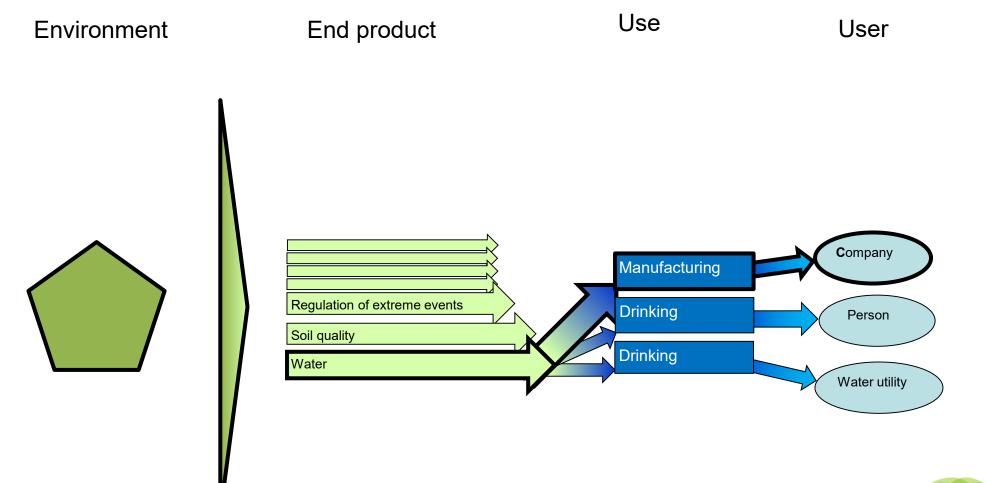
Inter-ecosystem flows

Ecosystem Accounting Unit


1. Unifying language

	Specific ES-CS terms and examples		
Term used in this paper	CICES	FEGS-CS (to be retired)	(to be <u>metired</u>) and <u>NESCS</u> Plus (from FEGS-CS and NESCS)
Hierarchical level [*]	Section, Division, Group, Class, Class Type	Environmental Class, Environmental Sub-Class, Beneficiary Class, Beneficiary Sub-Class	Environment, Ecological End- Products, Direct Use/Non-Use, Direct User
Example elements of the FES (element)**	Provisioning, Biomass, Wild Animals, Terrestrial, Nutrition	Terrestrial, Forest, Recreational, Hunting	Forest, Fauna, Hunting for Consumption, Households
Code	1.1.6.2	21.0604	21.3.1106.2
Example of the FES the system names	Food from wild animals	Recreational forest hunting	Animals in forests hunted for household consumption

1. Unifying language



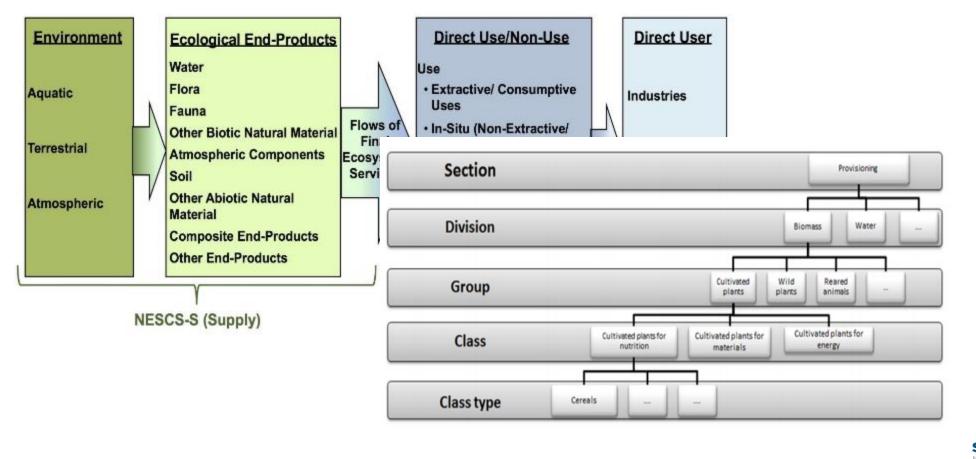
© Sustainable Flows, 2 Graph Source: Legagneux, P., N. Casajus, K. Cazelles, C. Chevallier, M. Chevrinais, L. Guéry, C. Jacquet, M. Jaffré, M. Naud, F. Noisette, P. Ropars, S. Vissault, P. Archambault, J. Béty, D. Berteaux, and D. Gravel. 2018. Our House Is Burning: Discrepancy in Climate Change vs. Biodiversity Coverage in the Media as Compared to Scientific Literature . Front. Ecol. Evol. https://doi.org/10.3389/fevo.2017.00175

2. Understand how all the elements interrelate

4. Improved knowledge transfer

- Benefit transfers
 - More precise elements and metrics
- Scaling
 - A. Driving greater accuracy in scaling analysis
 - B. Informing the selection of scales
 - C. Encouraging greater consistency in defining scales
 - D. Helping ensure that FES are not "lost" in scaling
 - E. Improving communications with decision makers and stakeholders

5. Improved knowledge management



 Employee turnover less costly for employee and employer

ES-CS hierarchies

NESCS Four-Part Classification Structure (condensed)

